

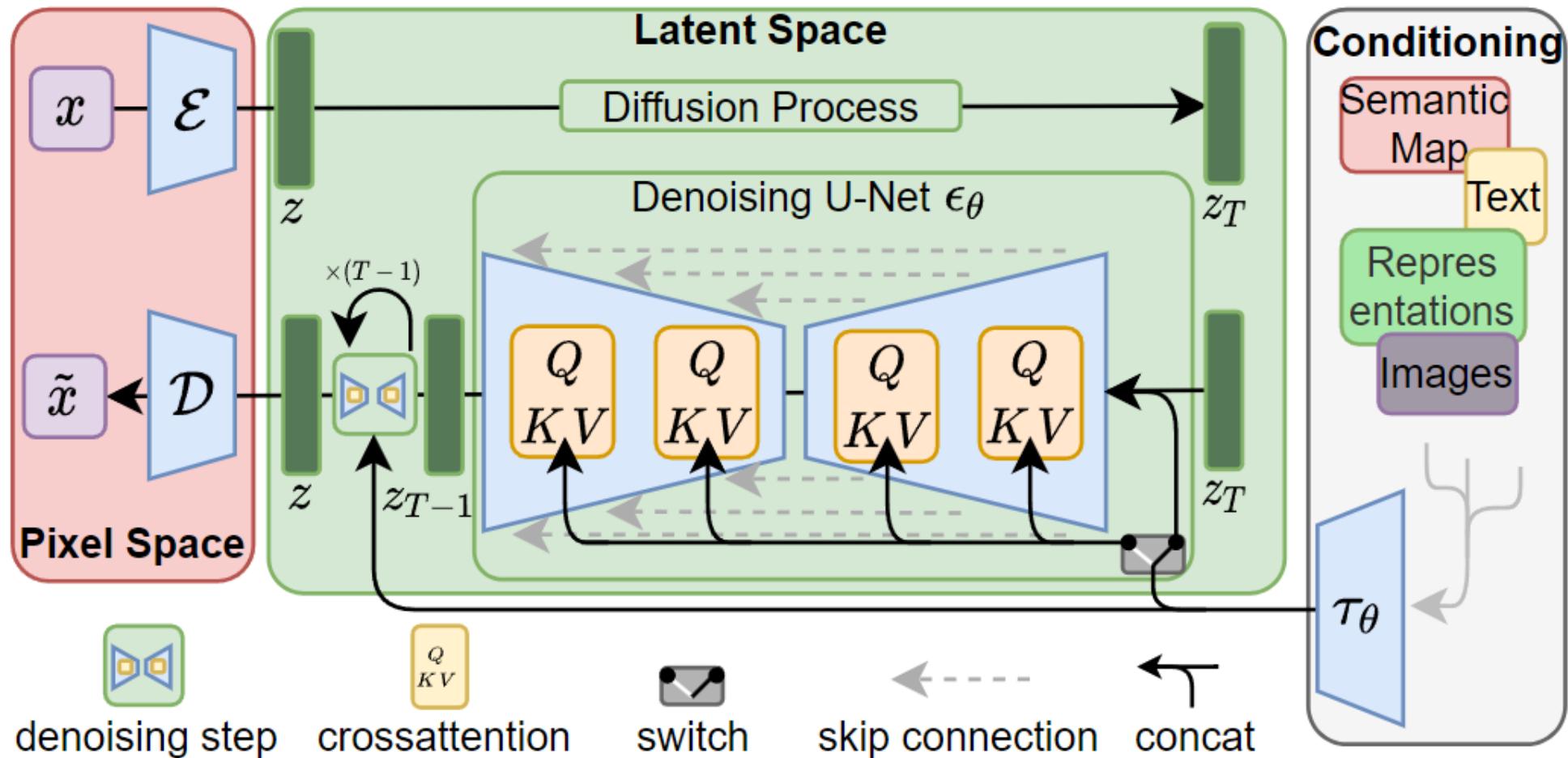
Seminar

朱顺尧

2025.10.17

Setting

Diffusion-based Training-free Segmentation



Diffusion Model is Secretly a Training-free Open Vocabulary Semantic Segmenter

Jinglong Wang^{1†}, Xiawei Li^{1†}, Jing Zhang^{1*}, Qingyuan Xu¹
Qin Zhou¹, Qian Yu¹, Lu Sheng¹, Dong Xu²

¹Beihang University

²The University of Hong Kong

wjlzy@buaa.edu.cn, zy2121108@buaa.edu.cn, zhang-jing@buaa.edu.cn

Motivation

Pixel-level labels are expensive

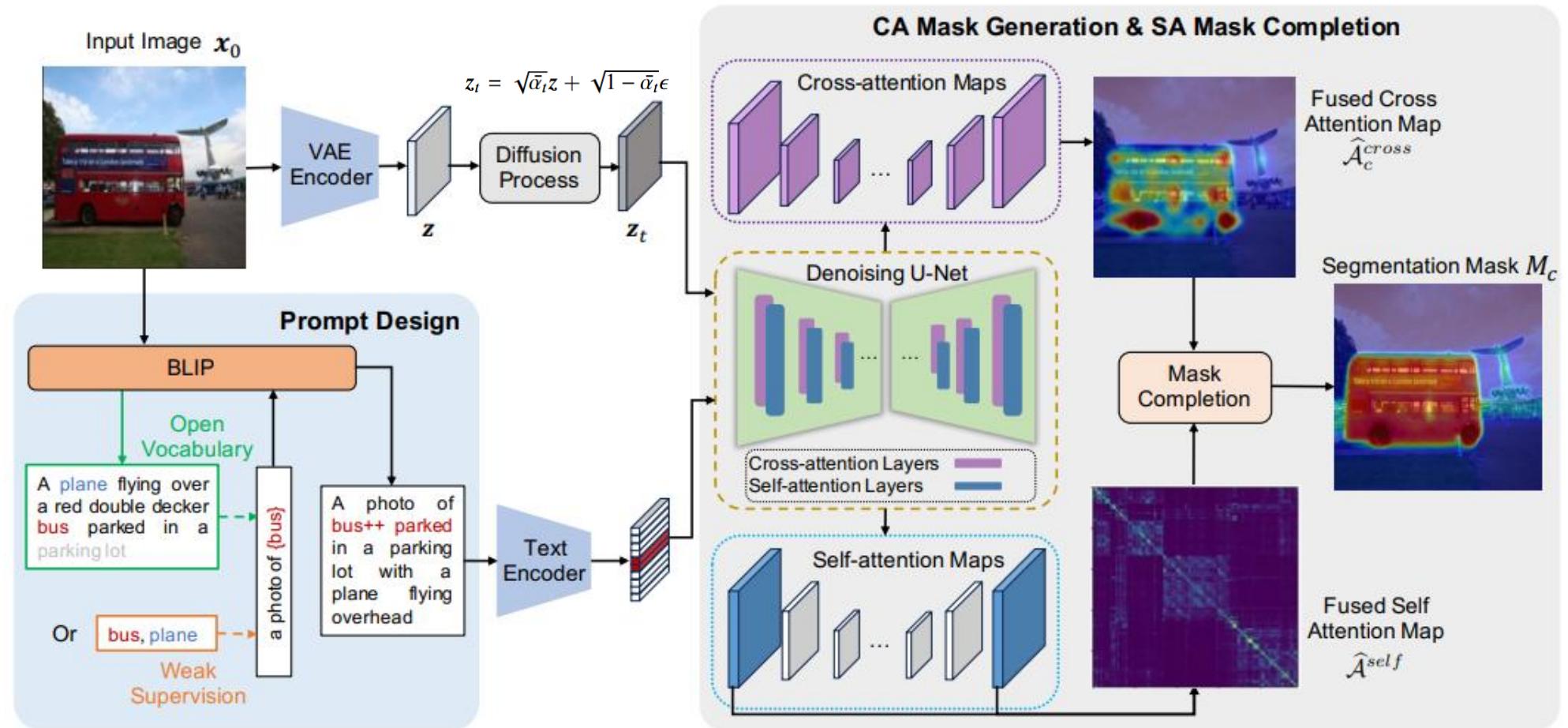
Models trained solely on fully annotated data are restricted to specific categories

Clip-based methods lack of crucial localization information and awareness of object shapes

A higher similarity leads to larger activation values in CAM, indicating a closer relationship between the current pixel and the corresponding text

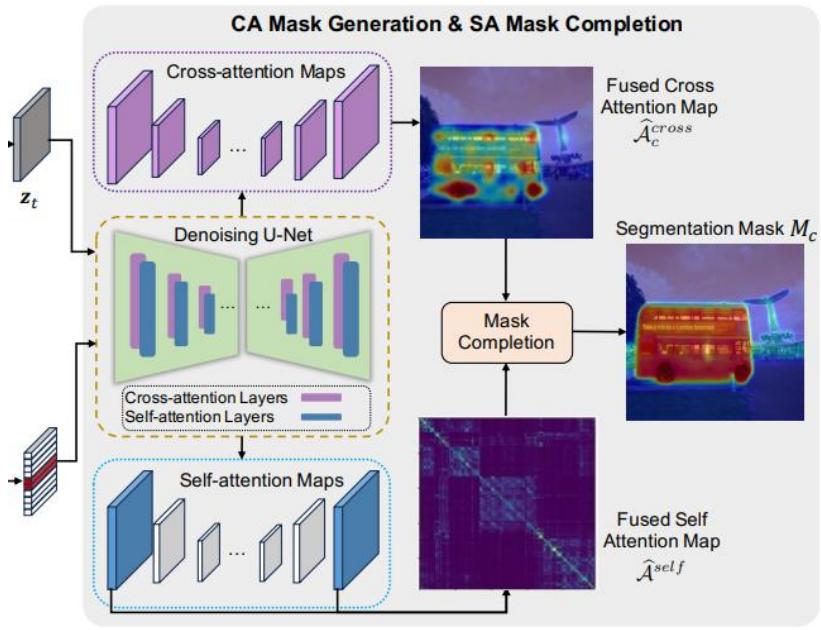
Method

Overall architecture



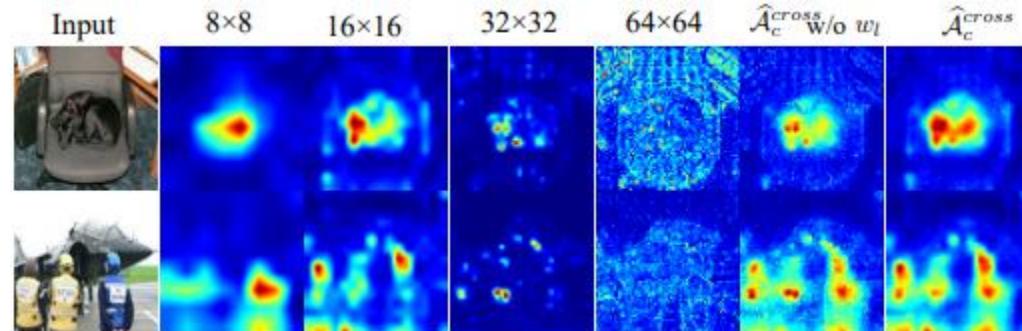
Method

Cross-attention-based Score Map Generation & Self-attention-based Score Map Completion



$$\hat{\mathcal{A}}_c^{cross} = \sum_{l \in L} w_l \cdot \mathcal{A}_{c,l}^{cross} \in \mathbb{R}^{H \times W},$$

[0.3, 0.5, 0.1, 0.1]



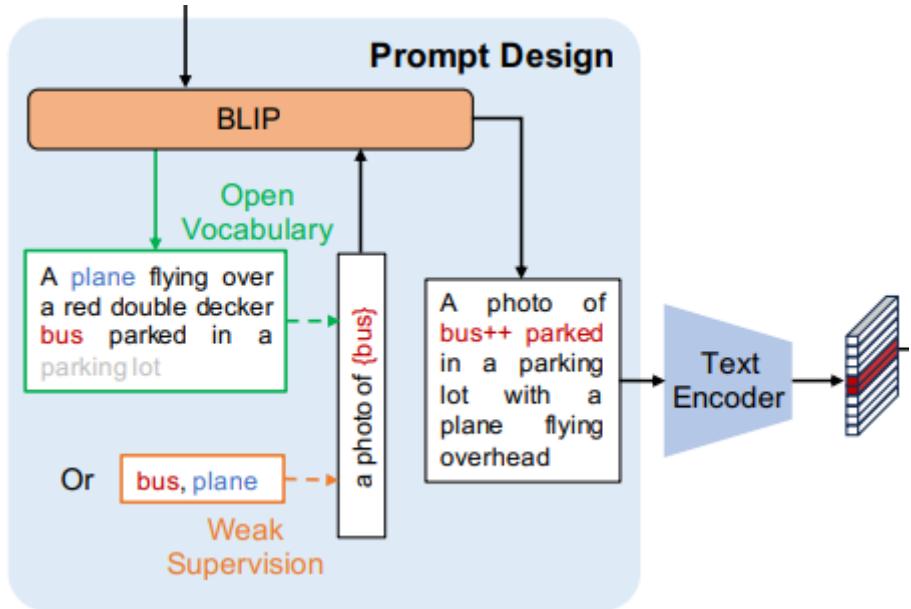
lack clear object boundaries and may exhibit internal holes:
use SAM to perform region completion

$$\hat{\mathcal{A}}_c^{self} = \frac{1}{L} \sum_{l \in L} \mathcal{A}_l^{self} \in \mathbb{R}^{HW \times HW},$$

$$M_c = \text{norm}(\hat{\mathcal{A}}_c^{self} \cdot \text{vec}(\hat{\mathcal{A}}_c^{cross})),$$

Method

Prompt Design for Semantic Enhancement

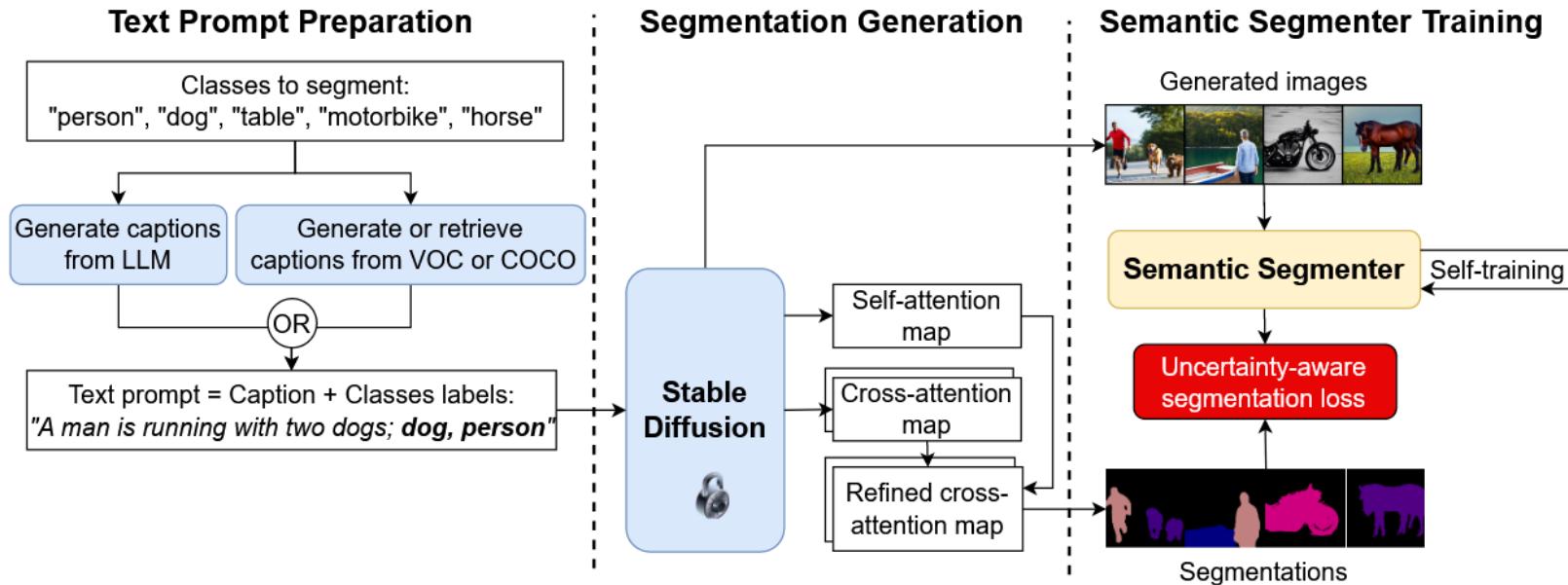


The cross-attention maps of the class names and the adverbs or adjectives are fused to obtain the segmentation score maps.

Class Token Re-weighting

Method

Dataset Diffusion



Results

RESULTS OF ZERO-SHOT OPEN-VOCABULARY SEMANTIC SEGMENTATION
ON THREE BENCHMARK DATASETS

Method	VOC	Context	Object
<i>Training-involved</i>			
ReCo [45]	25.1	19.9	15.7
ViL-Seg [46]	37.3	18.9	-
MaskCLIP [23]	38.8	23.6	20.6
TCL [47]	51.2	24.3	30.4
CLIPPy [48]	52.2	-	32.0
GroupViT [49]	52.3	22.4	-
ViewCo [50]	52.4	23.0	23.5
SegCLIP [51]	52.6	24.7	26.5
OVSegmentor [25]	53.8	20.4	25.1
<i>Training-free</i>			
DiffSeg [17]	39.4	16.7	19.1
OVDiff(+CutLER+DINO&CLIP) [15]	67.1	30.1	<u>34.8</u>
OVDiff(+DINO&CLIP) [15]	62.8	28.6	34.9
OVDiff [15]	60.4	27.6	-
DiffSegmenter (Ours)	<u>60.1</u>	<u>27.5</u>	37.9

OVDiff necessitates a complex image synthesis process and involve additional pre-trained segmenters and feature extractors for prototype generation

Method	VOC train
<i>Image-level Supervision</i>	
IRN [Ahn <i>et al.</i> , 2019]	48.8
SC-CAM [Chang <i>et al.</i> , 2020]	50.9
SEAM [Wang <i>et al.</i> , 2020]	55.4
AdvCAM [Lee <i>et al.</i> , 2021b]	55.6
RIB [Lee <i>et al.</i> , 2021a]	56.5
OoD [Lee <i>et al.</i> , 2022]	59.1
MCTfomer [Xu <i>et al.</i> , 2022b]	61.7
DiffSegmenter (Ours)	70.5
<i>Image-level Supervision+Language Supervision</i>	
CLIMS [Xie <i>et al.</i> , 2022]	56.6
CLIP-ES [Lin <i>et al.</i> , 2023]	70.8

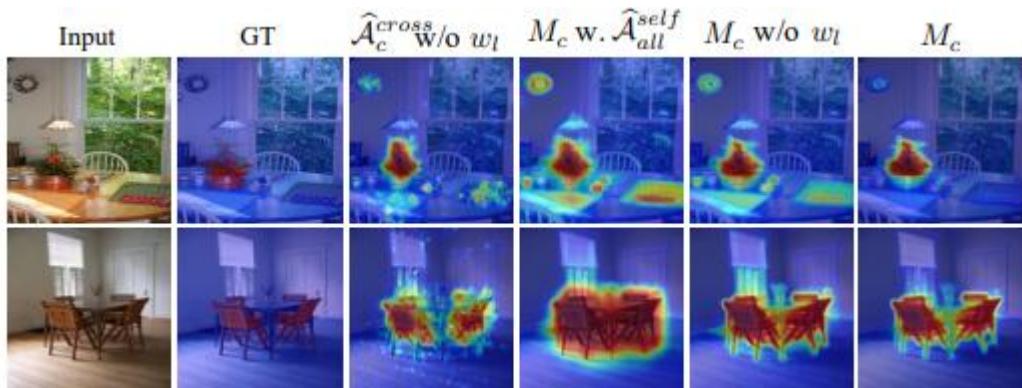
Table 2: Segmentation results of on PASCAL VOC 2012 train sets with image-level object labels.

Method	Backbone	Val	Test
<i>Image-level Supervision</i>			
AdvCAM [Lee <i>et al.</i> , 2021b]	R101	68.1	68.0
RIB [Lee <i>et al.</i> , 2021a]	R101	68.3	69.1
ReCAM [Chen <i>et al.</i> , 2022]	R101	68.5	68.4
DiffSegmenter (Ours)	R101	69.1	68.6
<i>Image-level Supervision+Language Supervision</i>			
CLIMS [Xie <i>et al.</i> , 2022]	R101	69.3	68.7
CLIP-ES [Lin <i>et al.</i> , 2023]	R101	71.1	71.4

Table 3: Weakly-supervised semantic segmentation results on PASCAL VOC 2012 validation and test sets.

Ablation

Method					VOC train
$\hat{\mathcal{A}}_c^{cross}$	$\hat{\mathcal{A}}_{all}^{self}$	$\hat{\mathcal{A}}_{self}^{self}$	BLIP	“++”	mIoU
w/o w_l			✓	✓	61.25
w/o w_l	✓		✓	✓	65.01
w/o w_l		✓	✓	✓	67.89
✓		✓			65.32
✓		✓	✓		67.99
✓		✓		✓	69.46
✓	✓	✓	✓	✓	70.49



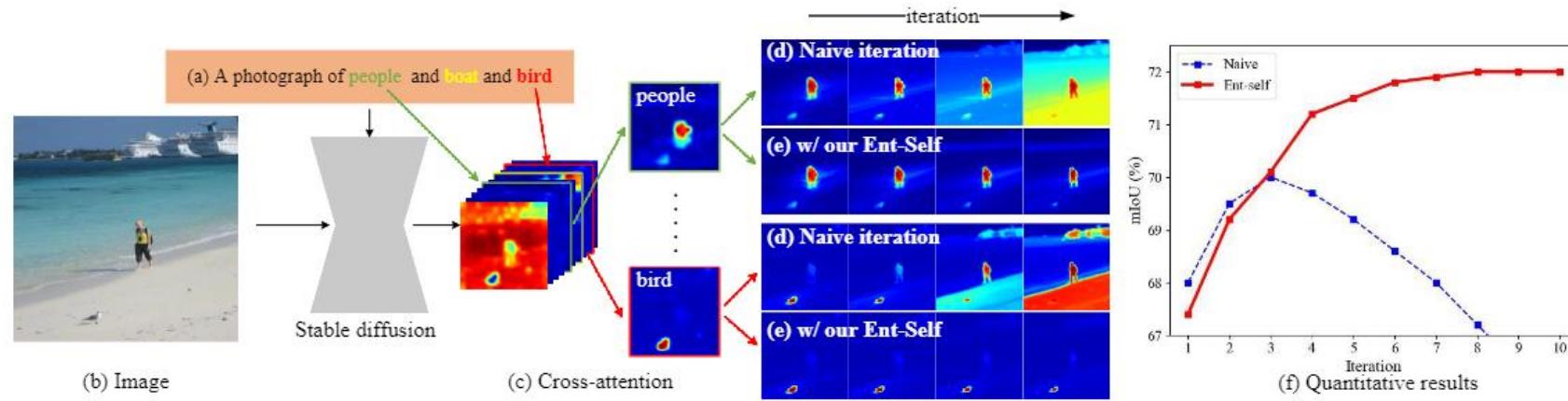
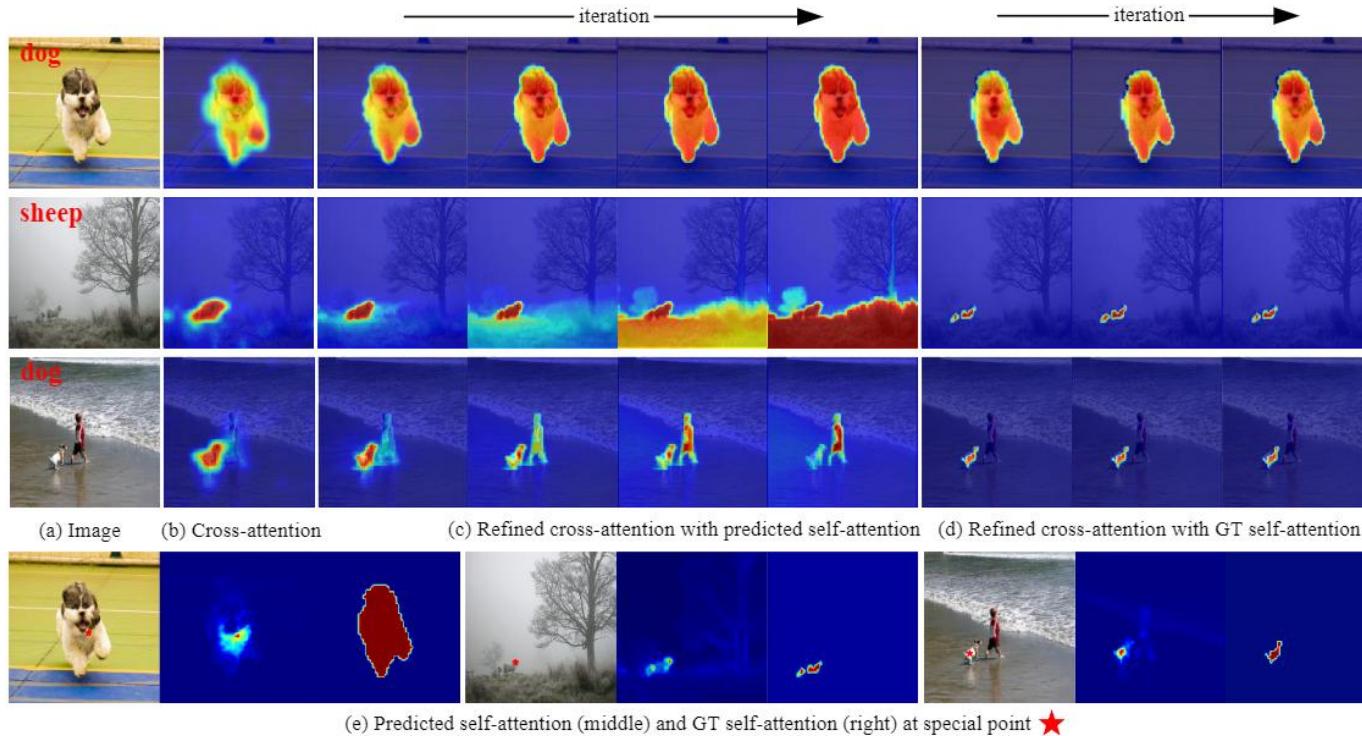
Method	t=1	t=50	t=100	t=150	Avg.
mIoU	69.10	69.94	70.30	69.69	70.49

Table 5: Results of different timesteps. **Avg.** is calculated by averaging the results of t=1,t=50,t=100 and t=150.

iSeg: An Iterative Refinement-based Framework for Training-free Segmentation

Lin Sun, Jiale Cao, Jin Xie, Fahad Shahbaz Khan, *Senior Member, IEEE*,
and Yanwei Pang, *Senior Member, IEEE*

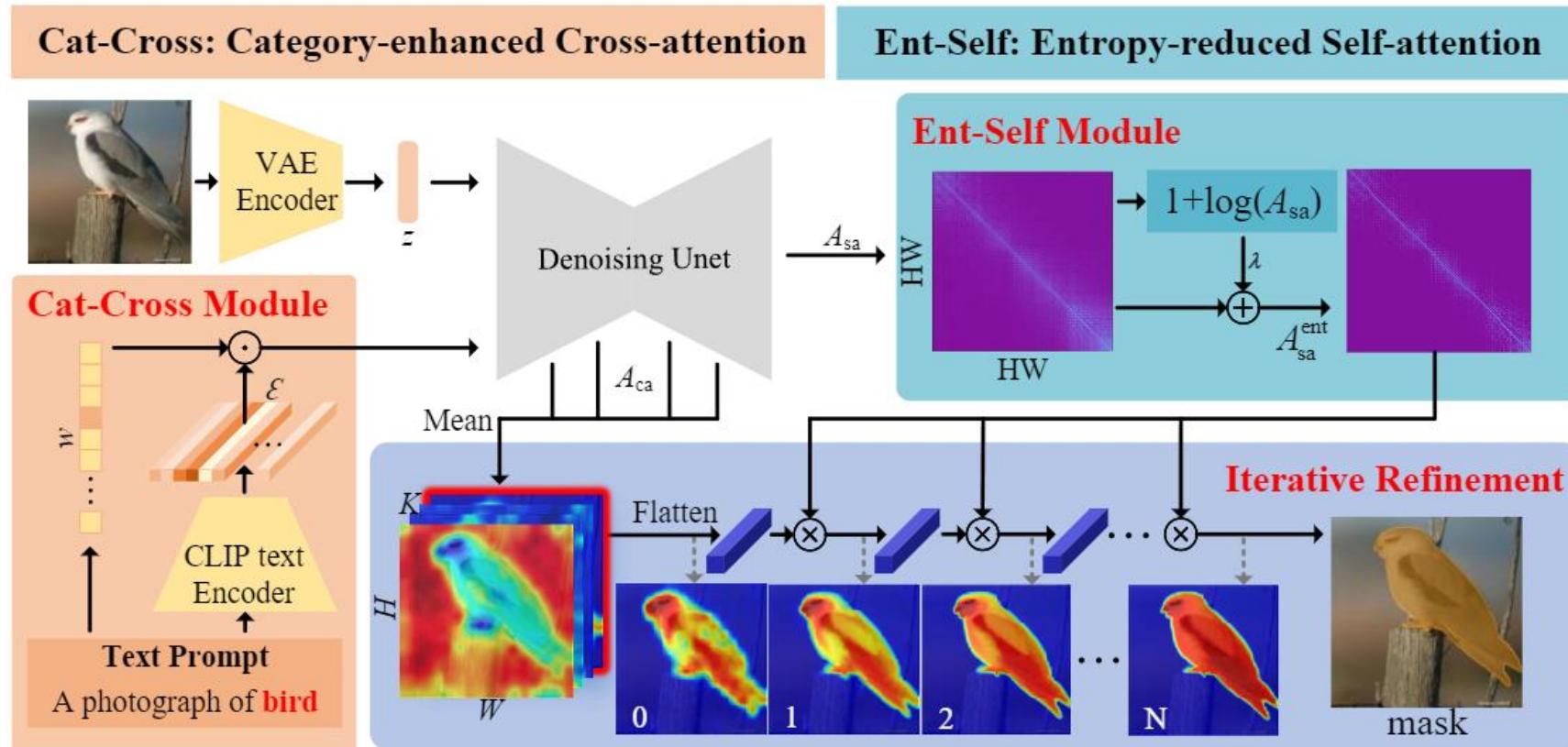
Motivation



Naive use of self-attn map to iteratively refine CAM may aggregates global information from irrelevant regions

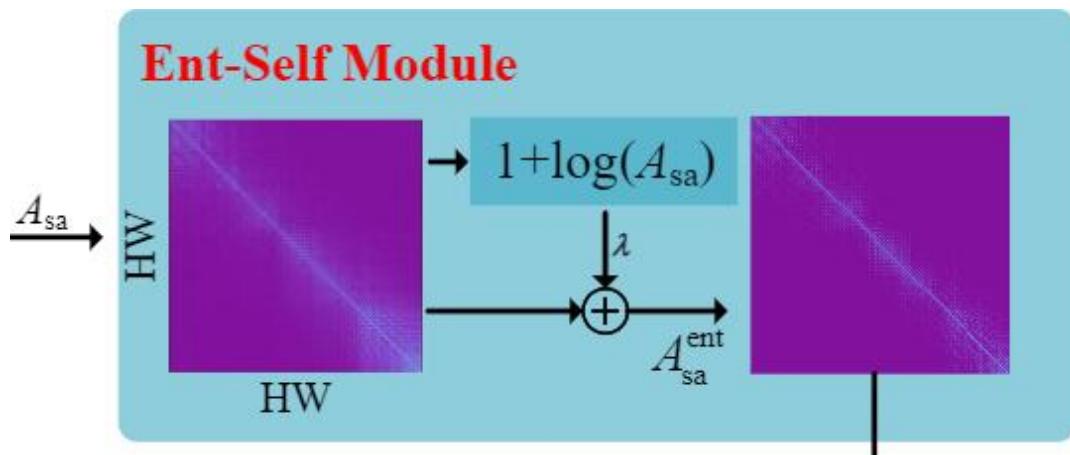
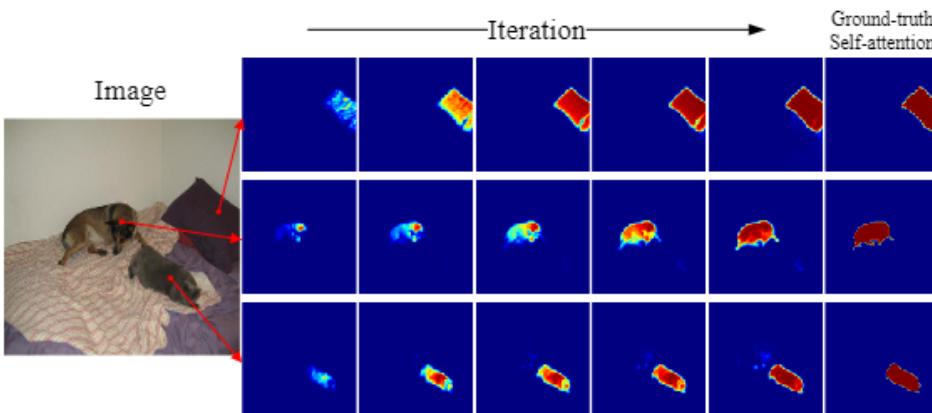
Method

Overall architecture



Method

Entropy-reduced self-attention



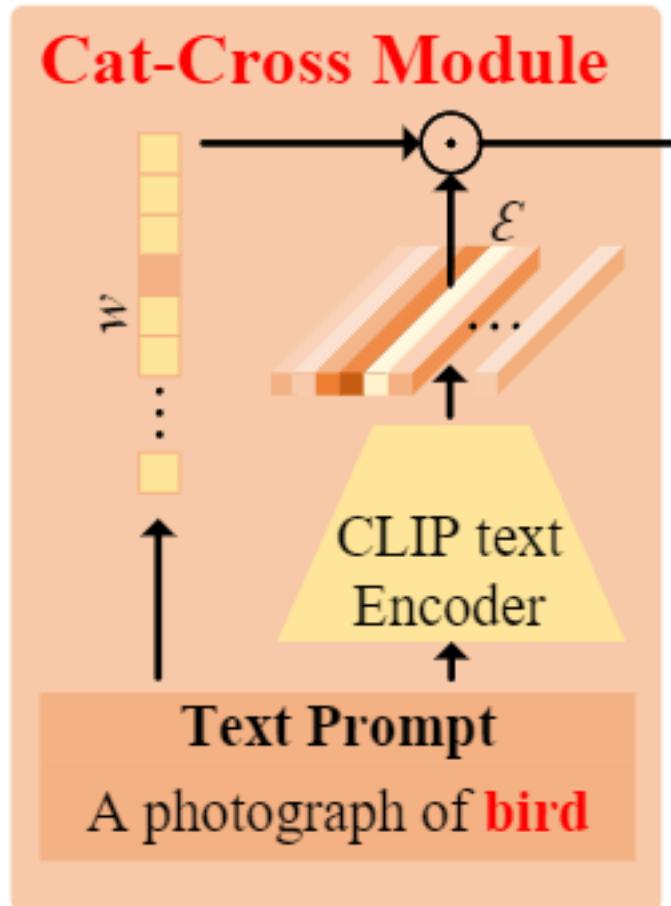
$$E = - \sum_{i=1}^{HW} \sum_{j=1}^{HW} A_{\text{sa}}[i, j] \log(A_{\text{sa}}[i, j]).$$

$$\frac{dE}{dA_{\text{sa}}^{ij}} = -(1 + \log(A_{\text{sa}}^{ij})).$$

$$A_{\text{sa}}^{ij} = A_{\text{sa}}^{ij} + \lambda(1 + \log(A_{\text{sa}}^{ij})),$$

Method

Category-enhanced cross-attention



$$W[j] = \begin{cases} \gamma, & \text{if } j \in \mathcal{C}, \\ 1, & \text{if } j \notin \mathcal{C}, \end{cases}$$

$$A_{\text{ca}} = \text{Softmax}\left(\frac{Q(W \cdot K)^T}{\sqrt{d}}\right),$$

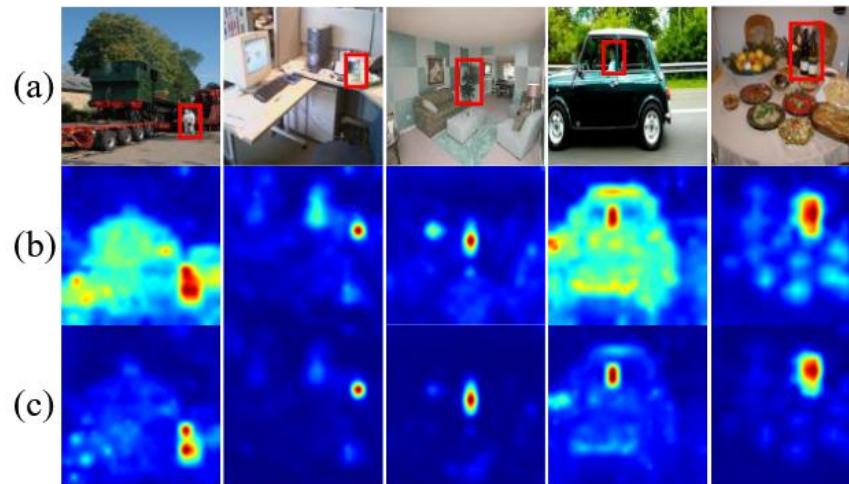


Fig. 5. Comparison of cross-attention maps before and after Cat-Cross module. Compared to the original cross-attention map (b), the refined cross-attention map (c) is more clean, and has strong response around corresponding objects in red bounding-box.

Results

TABLE 1

Comparison of pseudo mask generation with weakly-supervised semantic segmentation approaches. We report the mIoU results on PASCAL VOC 2012 and MS COCO training sets. Our proposed method outperforms various training-based and training-free approaches.

Type	Method	Publication	Training	VOC	COCO
CNN-based	IRN [1]	CVPR2019	✓	66.5	42.4
	AdvCAM [30]	CVPR2021	✓	55.6	35.8
	BAS [77]	IJCV2023	✓	57.7	36.9
	HSC [67]	IJCAI2023	✓	71.8	-
Transformer-based	MCTformer [74]	CVPR2022	✓	61.7	-
	MCTformer+ [73]	arXiv2023	✓	68.8	-
	ToCo [55]	CVPR2023	✓	72.2	-
	WeakTr [81]	arXiv2023	✓	66.2	-
CLIP-based	CLIMS [70]	CVPR2022	✓	56.6	-
	CLIP-ES [37]	CVPR2023	✗	70.8	39.7
Diffusion-based	DiffSegmenter [64]	arXiv2023	✗	70.5	-
	T2M [68]	arXiv2023	✗	72.7	43.7
	iSeg (Ours)	-	✗	75.2	45.5

TABLE 3

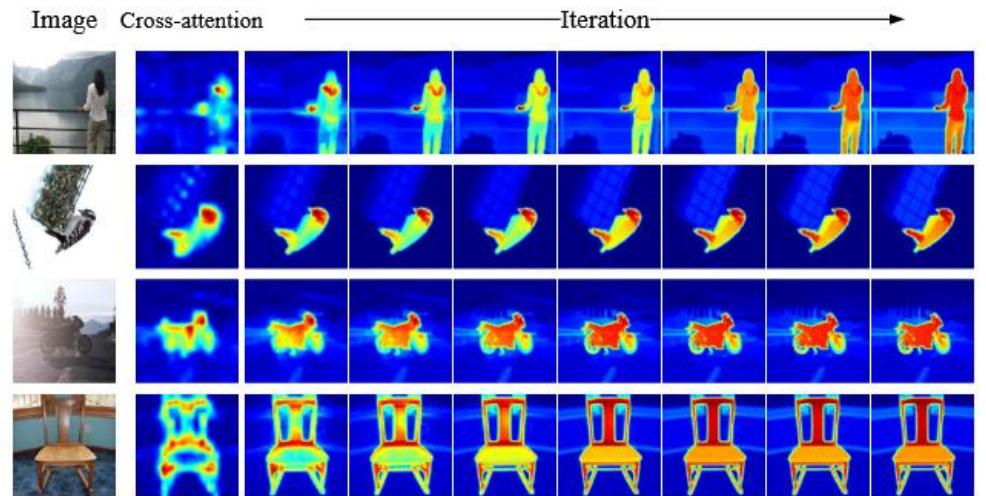
Comparison with some unsupervised semantic segmentation approaches. We report the results on Cityscapes and COCO-Stuff-27 validation sets. Our iSeg stably outperforms DiffSeg and other approaches on these two datasets in terms of mIoU and ACC.

Method	Publication	Training	Cityscapes		COCO-Stuff-27	
			ACC	mIoU	ACC	mIoU
MDC [7]	ECCV2018	✓	40.7	7.1	32.3	9.8
IIC [23]	ICCV2019	✓	47.9	6.4	21.8	6.7
PICLE [14]	CVPR2021	✓	65.5	12.3	48.1	13.8
STEGO [42]	ICLR2022	✓	73.2	21.0	56.9	28.2
MaskCLIP [80]	ECCV2022	✓	35.9	10.0	32.2	19.6
RoCo [58]	NeurIPS2022	✓	74.6	19.3	46.1	26.3
ACSeg [33]	CVPR2023	✓	-	-	-	28.1
DiffSeg [60]	CVPR2024	✗	76.0	21.2	72.5	43.6
iSeg (Ours)	-	✗	78.7	25.0	74.5	45.2

TABLE 2

Comparison with open-vocabulary segmentation approaches. We reports the mIoU results on PASCAL VOC 2012 validation set, PASCAL-VOC Context validation set, and MS COCO-Object validation set. Our proposed method achieves the promising performance.

Type	Method	Publication	Training	VOC	Context	Object
CLIP-based	ReCo [58]	NeurIPS2022	✓	25.1	19.9	15.7
	MaskCLIP [80]	ECCV2022	✓	38.8	23.6	20.6
	SegCLIP [41]	ICML2023	✓	52.6	24.7	26.5
	CLIPPy [51]	ICCV2023	✓	52.2	-	32.0
	ViewCo [52]	ICLR2023	✓	52.4	23.0	23.5
	OVSegmenter [72]	CVPR2023	✓	53.8	20.4	25.1
	TCL [8]	CVPR2023	✓	51.2	24.3	30.4
	TagCLIP [38]	AAAI2024	✗	64.8	-	-
	CaR [59]	CVPR2024	✗	67.6	30.5	36.6
SAM-based	SAM-CLIP [62]	CVPRW2024	✓	60.6	29.2	31.5
Diffusion-based	OVDiff [26]	ECCV2024	✗	67.1	30.1	34.8
	DiffSegmenter [64]	arXiv2023	✗	60.1	27.5	37.9
	iSeg (Ours)	-	✗	68.2	30.9	38.4



Ablation

Ent-Self	Cat-Cross	Weakly-supervised		Open-vocabulary			Unsupervised	
		VOC	COCO	VOC	Context	Object	Cityscapes	COCO-Stuff
✗	✗	68.2	40.1	63.7	26.4	36.6	22.8	44.4
✓	✗	72.0	42.5	67.1	28.2	37.5	25.0	45.2
✓	✓	75.2	45.5	68.2	30.9	38.4	N/A	N/A

(a) Iteration							
N	1	2	4	6	8	10	12
mIoU	71.0	72.9	74.5	75.0	75.1	75.2	74.9

(b) Updating factor						
λ	0	0.001	0.005	0.01	0.05	0.1
mIoU	69.1	74.3	75.0	75.2	74.6	74.1

(c) Weighting factor						
γ	1	1.2	1.4	1.6	1.8	2
mIoU	72.0	73.6	74.7	75.2	75.2	74.9

(a) Cross-attention map				
Level	16×16	32×32	Both	
mIoU	74.8	56.9	75.2	

(b) Self-attention map				
Layer	#-3	#-2	#-1	
mIoU	68.5	71.1	75.2	

(c) Time-step					
Number	1	50	100	150	200
mIoU	73.2	74.6	75.2	74.5	74.3