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Setting

Diffusion-based Training-free Segmentation
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Diffusion Model is Secretly a Training-free Open Vocabulary Semantic Segmenter
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Motivation

Pixel-level labels are expensive
Models trained solely on fully annotated data are restricted to specific categories

Clip-based methods lack of crucial localization information and awareness of object shapes

A higher similarity leads to larger activation values in CAM, indicating a closer relationship between
the current pixel and the corresponding text
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Overall architecture
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Method

Cross-attention-based Score Map Generation
&Self-attention-based Score Map Completion

CA Mask Generation & SA Mask Completion
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Prompt Design for Semantic Enhancement
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The cross-attention maps of the class names and the adverbs
or adjectives are fused to obtain the segmentation score maps.

Class Token Re-weighting
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Dataset Diffusion
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Results

Method | VOC train
Image-level Supervsion
IRN [Ahn et al., 20191 48.8
. N < S SC-CAM [Chang et al., 2020] 50.9
ESULTS OF LZERO-5SHOT OPEN-VOCABULARY SEMANTIC SEGMENTATION
ON THREE BENCHMARK DATASETS SEAM [Wﬂng et ﬂj., 2020] 554
AdvCAM [Lee et al., 2021bl 55.6
I l\flethod | VOC _ Context  Object RIB [Lee et al., 2021al 56.5
Training-involve )
B ReCo [45] - 19.9 157 OoD [Lee et al.. 20221 59.1
ViL-Seg [46] 37.3 18.9 - MCTfomer [Xu er al., 2022b] 61.7
MaskCLIP [23] 38.8 23.6 20.6 :
L [47] s aua 0 DiffSegmenter _(C_]'urs) 70.5 _
CLIPpy [48] 520 ) 1.0 Image-level Supervision+Language Supervision
G\rlf)upgiT 211)9] zgi ;gg s CLIMS [Xie er al., 2022] 56.6
SesCLIP 511 RS S CLIP-ES [Lin et al., 2023] 70.8
OVSegmentor [25] 53.8 20.4 25.1
fraining Wm-l-scg [17] 94 167 19.1 Table 2: Segmentation results of on PASCAL VOC 2012 train sets
OVDiff(+CutLER+DINO&CLIP) [15] | 67.1 30.1 34.8 with image-level object labels.
OVDiff(+DINO&CLIP) [15] 62.8 28.6 34.9
OVDiff [15] 60.4 27.6 -
DiffSegmenter (Ours) 60.1 27.5 379 Method Backbone | Val  Test
Image-level Supervsion
AdvCAM [Lee et al., 2021b] R101 658.1 68.0
. . . RIB [Lee et al., 2021a] R101 68.3 69.1
OVDiff necessitates a complex image ReCAM [Cheneral,2022]  RI01 | 68.5 684
synthe3|s process and involve additional DiffSegmenter (Ours) R101 69.1 6%.6
pre-trained Seg menters and featu re Image-level Supervision+Language Supervision
extractors for prototype generation CLIMS [Xie er al., 2022] R101 69.3 068.7
CLIP-ES [Lin et al., 2023] R101 71.1 714

Table 3: Weakly-supervised semantic segmentation results on PAS-
CAL VOC 2012 validation and test sets.



Ablation

Method VOC train
Across gl Jself  BLIP  “44” | mloU
wilo uy v v 61.25
wow, v oo 65.01 Method | t=1 | =50 | t=100 | t=150 | Avg.
wlo wi v a8 mloU | 69.10 | 69.94 | 70.30 | 69.69 | 70.49
v v v 67.99
v v v 69.46 Table 5: Results of different timesteps. Avg. is calculated by aver-
v v v v 70.49 aging the results of t=1,t=50,t=100 and t=150.
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ISeg: An lterative Refinement-based Framework
for Training-free Segmentation

Lin Sun, Jiale Cao, Jin Xie, Fahad Shahbaz Khan, Senior Member, IEEE,
and Yanwei Pang, Senior Member, IEEE



Motivation
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Naive use of self-attn map to
iteratively refine CAM may
aggregates global information
from irrelevant regions



Method

Overall architecture

Cat-Cross: Category-enhanced Cross-attention  Ent-Self: Entropy-reduced Self-attention
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Method

Entropy-reduced self-attention
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Method

Category-enhanced cross-
attention

Cat-Cross Module
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Fig. 5. Comparison of cross-attention maps before and after Cat-
Cross module. Compared to the original cross-attention map (b), the
refined cross-attention map (c) is more clean, and has strong response
around corresponding objects in red bounding-box.



Results

TABLE 1 TABLE 2
Comparison of pseudo mask generat[qn with weakly-supervised semantic segmenllalion approaches. We re;_)o.rl the mloU results on Comparison with open-vocabulary segmentation approaches. We reports the mloU results on PASCAL VOC 2012 validation set,
PASCAL VOC 2012 and MS COCO training sets. Our proposed method outperforms various training-based and training-free approaches. >ASCAL-VOC Context validation set, and MS COCO-Object validation set. Our proposed method achieves the promising performance.

. T Teairirer .
Type | Method ‘ Publication Iraining | vac coco Type | Method | Publication Training | vOC Context Obiject
g{[{“ JCJA " ‘éxiiﬁgi : 222 22-: ReCo [+1] NeurlPS2022 v 251 199 157
CNN-based B:\:; 1 1CV2003 v 577 369 MaskCLIP | ECCV2022 'd 38.8 23.6 20.6
H%&JJ:I| 1JCA12[1£3 Y 7 36. SegCLIP [ 1] ICML2023 v 52.6 247 265
- ) - : CLIP-based CLIPpy | 1ICCV2023 v 52.2 - 32.0
MCTformer [ 1] CVPR2022 v 61.7 - ViewCo [77] ICLR2023 v 524 23.0 235
Transformer-based MCTformer+ [7] arXiv2023 v 68.8 - OVSegmenter [ ] CVPR2023 v 53.8 20.4 25.1
) ) ToCo 0] CVPR2023 v 72.2 - TCLIA] CVPR2023 v 5l1.2 24.3 30.4
WeakTr [©1] arXiv2023 v 66.2 - TagCLIP AAAI2024 X 64.8 - -
>, P
CLIP-based CLIMS [ 1] CVPR2022 v 56.6 B CaR["9] CVPR2024 X 67.6 30.5 36.6
) CLIP-ES 7] CVPR2023 x 70.8 39.7 SAM-based | SAM-CLIP[-7] | CVPRW2024 v | 606 29.2 315
DiffSegmenter [01] arXiv2023 X 70.5 - OVDiff [71] ECCV2024 X 67.1 301 34.8
Diffusion-based T2M [0 arXiv2023 X 727 43.7 Diffusion-based DiffSegmenter [(/] arXiv2023 X 60.1 275 37.9
iSeg (Ours) - X 75.2 45.5 iSeg (Ours) = X 68.2 30.9 384
Image Cross-attention Iteration >

TABLE 3
Comparison with some unsupervised semantic segmentation approaches. We report the results on Cityscapes and COCO-Stuff-27
validation sets. Our iSeg stably outperforms DiffSeg and other approaches on these two datasets in terms of mloU and ACC.

SRR TR Teaioi o Cityscapes COCO-5Stuff-27
Method Publication [raining ACC mloU ACC mloU
MDC [7] ECCV2018 v 40.7 7.1 32.3 9.8
nces] 1CCV2019 4 47.9 6.4 21.8 6.7
PICLE[11] CVPR2021 v 65.5 123 48.1 13.8
STEGO [17] ICLR2022 4 73.2 21.0 56.9 28.2
MaskCLIP [20] ECCV2022 v 359 10.0 322 19.6
RoCo [57] NeurlP’S2022 v 74.6 19.3 46.1 26.3
ACSeg [ 7] CVPR2023 v - - - 281
DiffSeg [00] CVPR2024 X 76.0 212 725 43.6
iSeg (Ours) = X 78.7 25.0 74.5 45.2




Ablation

o - o Weakly-supervised Open-vocabulary Unsupervised
EntSelf  CatCross | yoe™  coCO | VOC  Context  Object | Cityscapes  COCO-Stuff
X X 68.2 40.1 63.7 264 36.6 228 444
v X 72.0 42.5 67.1 28.2 37.5 25.0 45.2
v v 752 45.5 68.2 30.9 384 N/A N/A
(a) lteration (a) Cross-attention map
N |1 2 4 6 8 10 12 Level |  16x16 32x32 Both
mloU | 71.0 729 745 750 751 752 749 mloU | 74.8 56.9 75.2
(b) Updating factor (b) Self-attention map
A | 0 0.001 0.005 0.01 0.05 0.1 Layer | #-3 #2 #1
mloU | 69.1 743 750 752 746 741 mloU | 68.5 71.1 75.2
(c) Weighting factor (c) Time-step
v |1 12 14 16 18 2 Number | 1 50 100 150 200
mloU | 72.0 73.6 747 752 752 749 mloU | 73.2 746 75.2 74.5 74.3
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